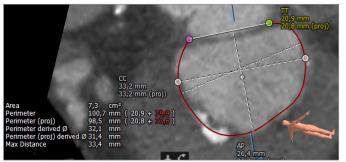

3mensio Mitral Valve

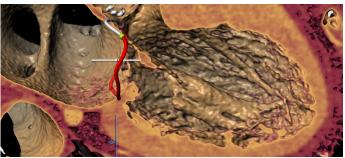
Pre-operative planning for mitral valve repair and replacement


Determine the anatomy and dimensions of the patient's mitral valve with this dedicated workflow. The 3D shape and dimensions of the annulus can easily be defined as well as the relationship with surrounding structures. Assess different approach routes to get a complete overview of the patient's anatomy.

Mitral annulus

Saddle shape and D-shape

Annulus dimensions


Multimodality mitral assessment

Simulated angio

The simulated angio view can be used to find best C-arm projections, which can be used during the procedure.

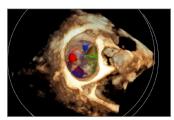
3D echo with virtual valve and neo-LVOT

A virtual valve can be placed, and a neo-LVOT measurement can be done directly on 3D echo measurements. The 3D echo data can be linked with the CT-analysis for a better assessment. After tracing the annuli within both modalities, the data can be linked, combining the best of both worlds.

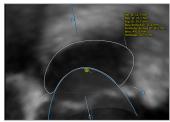
The heart with a defined mitral annulus.

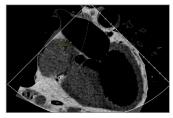
Mitral annulus anatomy

Annulus annotation


A single click brings you into the mitral space. Choose for automatic tracing of the saddle-shaped annulus over the full cardiac cycle, providing all key measurements and characteristics. This applies to both the saddle and D-shaped annulus.

Anatomical assessment


Different views are available to assess the shape and position of calcium and coronary vessel centerlines can be traced and visualized.


Simulated angio view

3D ultrasound

3D TEE neo-LVOT measurement

PIE MEDICAL

IMAGING

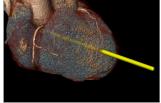
CT-derived virtual TEE

↓ +31 (0)43 328 13 28
☑ pmi@pie.nl
ⓓ www.piemedicalimaging.com

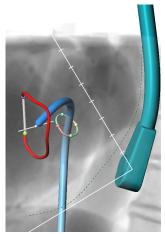
Philipsweg 1 6227 AJ Maastricht The Netherlands

3mensio Mitral Valve

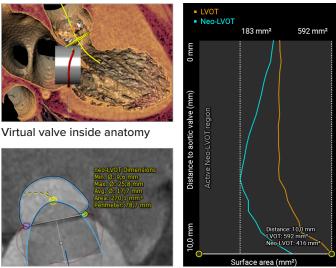
Virtual valve and automatic neo-LVOT on CT


A virtual valve can be placed by means of importing an STL file or creating a custom valve. After a virtual valve is placed, the LVOT obstruction can be measured automatically for the entire LVOT. The native LVOT and neo-LVOT will be plotted together in a graph. The smallest neo-LVOT can be saved to the report both in end-systole and end-diastole.

Septal crossing


Virtual ICE view

Transapical


Femoral and subclavian

Virtual TEE probe

Reporting

A complete report can be created by labeling the measurements in the different workflows. The most important measurements are shown in a summarizing infographic. Customize your report by adding screenshots of the assessment.

Short axis view on the LVOT

Auto neo-LVOT graph

Approach route assessment

Septal crossing: this workflow can be used to plan and visualize the catheter path through the vena cava and fossa ovalis by determining the septum anatomy.

Virtual TEE and ICE: make your pre-op planning complete with the virtual TEE or ICE modules that help to assess and plan TEE and ICE probe position, angles, and views in either mono or bi-plane echo views.

Transapical: the trajectory of a catheter is automatically determined perpendicular from the mitral valve towards the apex. The entry point and structures like ribs, skin and vessels can be visualized.

Pie Medical Imaging develops, produces and sells products in accordance with international accepted standards. The regulatory approval status of 3mensio or any of its features may vary per region. Please contact: regulatory@pie.nl to learn if clinical use of 3mensio or any specific features is allowed in your region.

